Acceleration #### • Issues - Energy spread to storage ring - ◆ Beam loading - ◆ Energy spread in arcs - ◆ Transverse acceptance - ◆ Transverse beam blowup ### • Plans - ◆ 200 MHz racetrack RLA base design (JLab) - ◆ Analyze advantages, realism, of other ideas - **★** Dogbone - **★** 400 MHz - **★** FFAG: - > Isochronous - > Non-isochronous ## **Generic Acceleration** - Parameter optimization - ◆ Plots versus turn number - ★ Arc cost linear in energy acceptance - * Arc costs increase with turns - ★ Linac costs decrease with turns - ★ Linac costs decrease with frequency | f | n | ΔE | η/B | Δx | Cost | |-----|---|------------|-------------------|------------|------| | MHz | | MeV | T^{-1} | cm | | | 200 | 8 | 180 | 0.0474 | 2.9 | 185 | | 200 | 6 | 273 | 0.0068 | 0.6 | 217 | | 400 | 5 | 338 | 0.0137 | 1.5 | 203 | #### Results - **★** Higher frequency better for fewer turns - **★** Energy spread strongly affects cost - * Reducing M_{56} increases energy spread, cost - * Momentum compaction too high for 200 MHz max η . - * Cost, energy spread increase with frequency for $\max \eta$. - ★ More turns for optimum at lower frequency, energy spread - * Probable optimum: max η at lowest frequency - **★** Optimum not sharp - ◆ Task: understand arc cost dependence # **Beam Loading** - Max at 400 MHz - ◆ Gradient sag: 9% (18% energy) - ◆ Energy oscillation amplitude: 18 MeV - **★** Smooth approximation - ★ Probably worse in real life, factor of 2? - Beam loading non-issue - Simulate for convincing results ## **Baseline Scheme Issues** - Maximize M_{56} for minimum energy spread - ◆ Try further off-crest? - Transverse acceptance/blowup - Full nonlinear simulation in standard code (COSY?) - Get dependence of arc cost on energy spread - ◆ Performance also - Fast longitudinal rotation - Full optimization ## **Alternative Scheme Plans** ## Dogbone ◆ Produce system design, compare to racetrack (Me, Carol) #### • Isochronous FFAG - ◆ Multi-frequency scheme (loading, length): Palmer - Analyze, simulate for effects (me) - ◆ Arc design (Carol) ## • Non-isochronous FFAG - Frequency shifting schemes - **★** Ferrite (Zhao, ?): most promising? - * Piezo - **★** PIN diode ### **RF Power** - 200 MHz needed in two places - Acceleration - **★** Small amount of power - ★ 2 ms pulse length - Cooling - **★** Vast majority of power - ⋆ Major contributor to cost - \star 200 μ s pulse length - Screams for pulse compression - ★ Large cavity size - Non-uniform pulse pattern - ◆ Average rep rate is 15 Hz - ◆ Local rep rate is 60 Hz - ◆ Source cost may be determined by local rep rate - **★** Heating - ★ Electron/ion clearing - Consider various types - Klystrons (most likely) - ◆ Tetrodes (reliability) - ◆ Magnetrons (???)